【Android12】Android Framework系列---tombstone墓碑生成机制

news/2024/5/18 21:35:48 标签: android, tombstone, bionic, 墓碑, 墓碑机制, signal

tombstone_0">tombstone墓碑生成机制

Android中程序在运行时会遇到各种各样的问题,相应的就会产生各种异常信号,比如常见的异常信号 Singal 11:Segmentation fault表示无效的地址进行了操作,比如内存越界、空指针调用等。
Android中在进程(主要指native进程)崩溃时会生成墓碑文件,这些文件中记录了崩溃时的调用堆栈、日志信息、寄存器二进制数据等等,用以帮助开发者已经崩溃问题。
墓碑文件默认保存在**/data/tombstones/**目录中,以tombstone_xxx(xxx表示编号)方式命名。墓碑文件数量有上限,达到上限时会删除最旧的墓碑文件,可以通过配置属性 tombstoned.max_tombstone_count来修改默认的墓碑文件数量。

本文源码基于Android12版本。

墓碑环境初始化

在这里插入图片描述

bionic_9">bionic为程序初始化墓碑生成环境

bionicandroid提供的符合POSIX接口的标准C库,其中提供了Linker(动态连接器)。动态链接器的作用是在运行动态链接的可执行文件时,动态链接器负责加载程序到内存中,并解析对符号的引用。
bionic在Linker中初始化墓碑生成环境,下面的汇编代码中执行了__linker_init这个符号(函数)

//bionic/linker/arch/arm64/begin.S
#include <private/bionic_asm.h>

ENTRY(_start)
  // Force unwinds to end in this function.
  .cfi_undefined x30

  mov x0, sp
  bl __linker_init

  /* linker init returns the _entry address in the main image */
  br x0
END(_start)

__linker_init这个函数定义在/bionic/linker/linker_main.cpp中,先后执行__linker_init、__linker_init_post_relocation、linker_main。在linker_main函数中,调用linker_debuggerd_init,初始化墓碑生成环境。另外,在linker_main函数中可以看到很多比较重要的初始化函数,比如__system_properties_init。

//bionic/linker/linker_main.cpp
extern "C" ElfW(Addr) __linker_init(void* raw_args) {
  // Initialize TLS early so system calls and errno work.
   // 省略
  return __linker_init_post_relocation(args, tmp_linker_so);
}

static ElfW(Addr) __attribute__((noinline))
__linker_init_post_relocation(KernelArgumentBlock& args, soinfo& tmp_linker_so) {
  // 省略
  // 执行linker_main
  ElfW(Addr) start_address = linker_main(args, exe_to_load);

  if (g_is_ldd) _exit(EXIT_SUCCESS);

  INFO("[ Jumping to _start (%p)... ]", reinterpret_cast<void*>(start_address));

  // Return the address that the calling assembly stub should jump to.
  return start_address;
}

static ElfW(Addr) linker_main(KernelArgumentBlock& args, const char* exe_to_load) {
  ProtectedDataGuard guard;

#if TIMING
  struct timeval t0, t1;
  gettimeofday(&t0, 0);
#endif

  // Sanitize the environment.
  __libc_init_AT_SECURE(args.envp);

  // Initialize system properties
  __system_properties_init(); // may use 'environ'

  // Initialize platform properties.
  platform_properties_init();

  // 这里!!!
  // Register the debuggerd signal handler.
  linker_debuggerd_init();

  // 省略
  return entry;
}

linker_debuggerd_init函数定义在/bionic/linker/linker_debuggerd_android.cpp中,该函数调用了libdebuggerd_handler_core库(/system/core/debuggerd)的debuggerd_init函数。

//bionic/linker/linker_debuggerd_android.cpp
void linker_debuggerd_init() {
  // There may be a version mismatch between the bootstrap linker and the crash_dump in the APEX,
  // so don't pass in any process info from the bootstrap linker.
  debuggerd_callbacks_t callbacks = {
#if defined(__ANDROID_APEX__)
      .get_process_info = get_process_info,
#endif
      .post_dump = notify_gdb_of_libraries,
  };
  // 这里
  debuggerd_init(&callbacks);
}
debuggerd模块为Signal安装处理的Handler

debuggerd_init函数中,会为各个异常信号Signal注册用来处理信号的Handler。这样当程序发生异常时,就会调用注册好的Handler。

//system/core/debuggerd/handler/debuggerd_handler.cpp
void debuggerd_init(debuggerd_callbacks_t* callbacks) {
  // 省略
  // linux sigaction的标准用法
  struct sigaction action;
  memset(&action, 0, sizeof(action));
  sigfillset(&action.sa_mask);
  // debuggerd_signal_handler就是用来处理异常信号的Handler
  action.sa_sigaction = debuggerd_signal_handler;
  action.sa_flags = SA_RESTART | SA_SIGINFO;

  // Use the alternate signal stack if available so we can catch stack overflows.
  action.sa_flags |= SA_ONSTACK;

#define SA_EXPOSE_TAGBITS 0x00000800
  // Request that the kernel set tag bits in the fault address. This is necessary for diagnosing MTE
  // faults.
  action.sa_flags |= SA_EXPOSE_TAGBITS;
  // 为各个异常信号注册Handler
  debuggerd_register_handlers(&action);
}

debuggerd_register_handlers函数在头文件中实现(这种形式叫内联函数)。可以通过ro.debuggabledebug.debuggerd.disable属性来控制注册过程。

//system/core/debuggerd/include/debuggerd/handler.h
static void __attribute__((__unused__)) debuggerd_register_handlers(struct sigaction* action) {
  char value[PROP_VALUE_MAX] = "";
  bool enabled =
      !(__system_property_get("ro.debuggable", value) > 0 && !strcmp(value, "1") &&
        __system_property_get("debug.debuggerd.disable", value) > 0 && !strcmp(value, "1"));
  if (enabled) {
    // 针对不同异常注册
    sigaction(SIGABRT, action, nullptr);
    sigaction(SIGBUS, action, nullptr);
    sigaction(SIGFPE, action, nullptr);
    sigaction(SIGILL, action, nullptr);
    sigaction(SIGSEGV, action, nullptr);
    sigaction(SIGSTKFLT, action, nullptr);
    sigaction(SIGSYS, action, nullptr);
    sigaction(SIGTRAP, action, nullptr);
  }

  sigaction(BIONIC_SIGNAL_DEBUGGER, action, nullptr);
}

到此墓碑环境注册完成,在这个流程中可以选择通过ro.debuggable或debug.debuggerd.disable来关闭墓碑

墓碑生成流程

在这里插入图片描述

完成了上述墓碑环境初始化后,当程序运行发生异常,比如内存越界触发了SIGSEGV就会调用debuggerd_signal_handler这个函数(

//system/core/debuggerd/handler/debuggerd_handler.cpp

// Handler that does crash dumping by forking and doing the processing in the child.
// Do this by ptracing the relevant thread, and then execing debuggerd to do the actual dump.
static void debuggerd_signal_handler(int signal_number, siginfo_t* info, void* context) {
  // 省略
  // clone一个子进程出来(在clone出来的进程中处理墓碑生成)
  // Essentially pthread_create without CLONE_FILES, so we still work during file descriptor
  // exhaustion.
  pid_t child_pid =
    clone(debuggerd_dispatch_pseudothread, pseudothread_stack,
          CLONE_THREAD | CLONE_SIGHAND | CLONE_VM | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID,
          &thread_info, nullptr, nullptr, &thread_info.pseudothread_tid);
  if (child_pid == -1) {
    fatal_errno("failed to spawn debuggerd dispatch thread");
  }

  // Wait for the child to start...
  futex_wait(&thread_info.pseudothread_tid, -1);

  // and then wait for it to terminate.
  futex_wait(&thread_info.pseudothread_tid, child_pid);

  // 后面是一些收尾处理
  // Restore PR_SET_DUMPABLE to its original value.
  if (prctl(PR_SET_DUMPABLE, orig_dumpable) != 0) {
    fatal_errno("failed to restore dumpable");
  }

  // Restore PR_SET_PTRACER to its original value.
  if (restore_orig_ptracer && prctl(PR_SET_PTRACER, 0) != 0) {
    fatal_errno("failed to restore traceable");
  }

  if (info->si_signo == BIONIC_SIGNAL_DEBUGGER) {
    // If the signal is fatal, don't unlock the mutex to prevent other crashing threads from
    // starting to dump right before our death.
    pthread_mutex_unlock(&crash_mutex);
  } else {
    // Resend the signal, so that either the debugger or the parent's waitpid sees it.
    resend_signal(info);
  }
}

上面的函数中,clone了一个子进程来处理了墓碑生成流程。clone出来的子进程会执行debuggerd_dispatch_pseudothread函数。

static int debuggerd_dispatch_pseudothread(void* arg) {
  // 省略
  // 创建pipe管理(因为后面还要fork一个进程来执行crash_dump64这个bin程序)
  // pipe用来与之后fork的进程通信用
  unique_fd input_read, input_write;
  unique_fd output_read, output_write;
  if (!Pipe(&input_read, &input_write) != 0 || !Pipe(&output_read, &output_write)) {
    fatal_errno("failed to create pipe");
  }

  // fork一个子进程
  // Don't use fork(2) to avoid calling pthread_atfork handlers.
  pid_t crash_dump_pid = __fork();
  if (crash_dump_pid == -1) {
    async_safe_format_log(ANDROID_LOG_FATAL, "libc",
                          "failed to fork in debuggerd signal handler: %s", strerror(errno));
  } else if (crash_dump_pid == 0) {
    // 省略

	// 子进程执行 "/apex/com.android.runtime/bin/crash_dump64 这个程序
	// crash_dump64程序是墓碑文件真正的生成者
    execle(CRASH_DUMP_PATH, CRASH_DUMP_NAME, main_tid, pseudothread_tid, debuggerd_dump_type,
           nullptr, nullptr);
    async_safe_format_log(ANDROID_LOG_FATAL, "libc", "failed to exec crash_dump helper: %s",
                          strerror(errno));
    return 1;
  }
  // 省略
}

在debuggerd_dispatch_pseudothread中主要做了两个事件,一个是创建Pipe用来与子进程通信。一个是fork了一个子进程,让子进程执行crash_dump64这个二进制程序。crash_dump64这个二进制程序中会真正的生成墓碑文件。
crash_dump64的实现在/system/core/debuggerd/crash_dump.cpp

int main(int argc, char** argv) {
  // 省略
  // 判断debug.debuggerd.wait_for_debugger,是否等待gdb
  // Defer the message until later, for readability.
  bool wait_for_debugger = android::base::GetBoolProperty(
      "debug.debuggerd.wait_for_debugger",
      android::base::GetBoolProperty("debug.debuggerd.wait_for_gdb", false));
  if (siginfo.si_signo == BIONIC_SIGNAL_DEBUGGER) {
    wait_for_debugger = false;
  }

  // 连接tombstoned守护进程,通过tombstoned得到墓碑文件的FD(g_output_fd)
  {
    ATRACE_NAME("tombstoned_connect");
    LOG(INFO) << "obtaining output fd from tombstoned, type: " << dump_type;
    g_tombstoned_connected = tombstoned_connect(g_target_thread, &g_tombstoned_socket, &g_output_fd,
                                                &g_proto_fd, dump_type);
  }

  // 使用unwindstack生成函数调用堆栈

  // TODO: Use seccomp to lock ourselves down.
  unwindstack::UnwinderFromPid unwinder(256, vm_pid, unwindstack::Regs::CurrentArch());
  if (!unwinder.Init()) {
    LOG(FATAL) << "Failed to init unwinder object.";
  }

  // 生成墓碑文件中的内容
  std::string amfd_data;
  if (backtrace) {
    ATRACE_NAME("dump_backtrace");
    dump_backtrace(std::move(g_output_fd), &unwinder, thread_info, g_target_thread);
  } else {
    {
      ATRACE_NAME("fdsan table dump");
      populate_fdsan_table(&open_files, unwinder.GetProcessMemory(),
                           process_info.fdsan_table_address);
    }

    {
      ATRACE_NAME("engrave_tombstone");
	  // 这里,生成墓碑
      engrave_tombstone(std::move(g_output_fd), std::move(g_proto_fd), &unwinder, thread_info,
                        g_target_thread, process_info, &open_files, &amfd_data);
    }
  }
	
  // 
  return 0;
}

crash_dump64会连接tombstoned这个进程,通过tombstoned取得将要输出的墓碑文件的FD(因为墓碑文件有数量限制、达到上限时要删除旧的墓碑文件,所以专门用tombstoned这个守护进程管理)。然后使用unwindstack库生成函数堆栈,并调用
engrave_tombstone函数生成墓碑

在engrave_tombstone函数中,我们会看到比较熟悉的墓碑文件中的文本内容。比如“***”这种字符。另外只有在ro.debuggable开启的状态下,才会调用dump_logs在墓碑文件中输出Log日志。

//system/core/debuggerd/libdebuggerd/tombstone.cpp
void engrave_tombstone(unique_fd output_fd, unique_fd proto_fd, unwindstack::Unwinder* unwinder,
                       const std::map<pid_t, ThreadInfo>& threads, pid_t target_thread,
                       const ProcessInfo& process_info, OpenFilesList* open_files,
                       std::string* amfd_data) {
  // Don't copy log messages to tombstone unless this is a development device.
  Tombstone tombstone;
  engrave_tombstone_proto(&tombstone, unwinder, threads, target_thread, process_info, open_files);

  if (proto_fd != -1) {
    if (!tombstone.SerializeToFileDescriptor(proto_fd.get())) {
      async_safe_format_log(ANDROID_LOG_ERROR, LOG_TAG, "failed to write proto tombstone: %s",
                            strerror(errno));
    }
  }

  log_t log;
  log.current_tid = target_thread;
  log.crashed_tid = target_thread;
  log.tfd = output_fd.get();
  log.amfd_data = amfd_data;

  bool translate_proto = GetBoolProperty("debug.debuggerd.translate_proto_to_text", true);
  if (translate_proto) {
    tombstone_proto_to_text(tombstone, [&log](const std::string& line, bool should_log) {
      _LOG(&log, should_log ? logtype::HEADER : logtype::LOGS, "%s\n", line.c_str());
    });
  } else {
    bool want_logs = GetBoolProperty("ro.debuggable", false);

    _LOG(&log, logtype::HEADER,
         "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***\n");
    dump_header_info(&log);
    _LOG(&log, logtype::HEADER, "Timestamp: %s\n", get_timestamp().c_str());

    auto it = threads.find(target_thread);
    if (it == threads.end()) {
      async_safe_fatal("failed to find target thread");
    }

    dump_thread(&log, unwinder, it->second, process_info, true);

    if (want_logs) {
      dump_logs(&log, it->second.pid, 50);
    }

    for (auto& [tid, thread_info] : threads) {
      if (tid == target_thread) {
        continue;
      }

      dump_thread(&log, unwinder, thread_info, process_info, false);
    }

    if (open_files) {
      _LOG(&log, logtype::OPEN_FILES, "\nopen files:\n");
      dump_open_files_list(&log, *open_files, "    ");
    }

    if (want_logs) {
      dump_logs(&log, it->second.pid, 0);
    }
  }
}

总结

墓碑初始化及生成流程中,可以通过属性控制是否注册墓碑、是否生成墓碑,以及墓碑文件的数量等功能。同时,也可以根据业务需求,在墓碑中加入自定义内容,比如给墓碑文件的名字追加特殊的时间戳、追加一些自定义日志到墓碑中等等。


http://www.niftyadmin.cn/n/5295820.html

相关文章

计算机网络——计算大题(七)

前言&#xff1a; 最近也是在准备计算机考试&#xff0c;我们的考试形式是上机考试&#xff0c;所以可能有些计算题是会给提供思路的&#xff0c;前面已经对本学期的计算机网络知识有了一个简单的认识与了解&#xff0c;现在我们就来对计算大题进行一个学习吧&#xff0c;这里的…

K8s-安全机制

目录 1、//机制说明 2、认证&#xff08;Authentication&#xff09; 3、鉴权&#xff08;Authorization&#xff09; 4、准入控制&#xff08;Admission Control&#xff09; 5、实践&#xff1a;创建一个用户只能管理指定的命名空间 1、//机制说明 Kubernetes 作为一个分…

PHP特性知识点扫盲 - 上篇

概述 之前在分析thinkphp源码的时候&#xff0c;对依赖注入等等php高级的特性一直想做一个梳理和总结&#xff0c;一直没有时间&#xff0c;好不容易抽一点时间对技术的盲点做一个扫盲和总结。 特性 1.命名空间 命名空间是在PHP5.3中引入&#xff0c;是一个很重要的工具&am…

【unity学习笔记】捏人+眨眼效果+口型效果

一、vriod捏人 1.在vroidstudio软件中捏人 2.导出模型&#xff08;.vrm) 二、vrid导入unity的插件 1.在Git上搜索、打开univrm。 2.找到release页面找到合适的插件版本。&#xff08;VRM-0.116.0_0f6c&#xff09; 3.将univrm导入到工程中&#xff08;assets&#xff09;。 三…

c++学习笔记(10)-可变参数模板

1、概念 可变参数模板&#xff08;Variable Template Parameters&#xff09;是 C11 中引入的一种语法&#xff0c;它允许函数或类模板接受可变数量的参数。这样可以方便地定义操作适用于多个类型和/或值的函数或类模板。 使用可变参数模板时&#xff0c;可以在模板参数列表中…

【AUTOSAR】软件架构中的接口设计与跨核通信解析

目录 前言 一、什么是接口? 二、什么是CS接口?什么是SR接口?区别是什么?

Linux 运维工具之1Panel

一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点&#xff1a; 快速建站&#xff1a;深度集成 Wordpress 和 Halo&#xff0c;域名绑定、SSL 证书配置等一键搞定&#xff1b;高效管理&#xff1a;通过 Web 端轻松管理 Linux 服务器&#xff0…

STM32实战之IAP代码升级

目录 1 IAP介绍 2 内存分区 3 整体设计流程图 4 Boot Loader的代码编写 5 APP1代码编写 6 APP2代码编写 stm32内部flash操作相关函数 1 IAP介绍 IAP&#xff08;In Application Programming&#xff09;即在应用编程&#xff0c; IAP 是用户自己的程序在运行过程中…